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SUMMARY

Motivated by the advances in computer technology and the fact that the batch/block least-squares (LS)
produces more accurate parameter estimates than its recursive counterparts, several important issues
associated with the block LS have been re-examined in the framework of on-line identification of systems
with abrupt/gradual change parameters in this paper. It is no surprise that the standard block LS performs
unsatisfactorily in such a situation. To overcome this deficiency, a novel variable-length sliding window-
based LS algorithm, known as variable-length sliding window blockwise least squares, is developed. The
algorithm consists of a change detection scheme and a data window with adjustable length. The window
length adjustment is triggered by the change detection scheme. Whenever a change in system parameters is
detected, the window is shortened to discount ‘old’ data and place more weight on the latest measurements.
Several strategies for window length adjustment have been considered. The performance of the proposed
algorithm has been evaluated through numerical studies. In comparison with the recursive least squares
(RLS) with forgetting factors, superior results have been obtained consistently for the proposed algorithm.
Robustness analysis of the algorithm to measurement noise have also been carried out. The significance of
the work reported herein is that this algorithm offers a viable alternative to traditional RLS for on-line
parameter estimation by trading off the computational complexity of block LS for improved performance
over RLS, because the computational complexity becomes less and less an issue with the rapid advance in
computer technologies. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since Karl Gauss proposed the technique of least squares in 1795 for predicting the motion of
planets and comets using telescopic measurements, least squares (LS) and its many variants
have been widely used [1–8]. The popular parameter estimation algorithms, such as least
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squares, generalized/extended least squares, instrumental variables, maximum likelihood and
extended Kalman filter (among others), have been reviewed in several survey papers and books,
for example, References [4–6, 8, 9]. In general, LS-based algorithms can be formulated either in
block/batch or recursive/on-line forms.

The classical formulation of least squares is in block/batch form, meaning that all
measurements are collected first and then processed in one batch. Such a formulation is often
referred to as block least squares. For on-line applications, the entire estimation process needs
to be repeated every time when a new measurement becomes available. This format of
implementation is referred to as blockwise least squares (BLS) in this paper. The main drawback
of a BLS is its computational burden since the computational complexity is in the order of
OðmaxðP 3; kP 2ÞÞ which grows continuously with the number of measurements k and the number
of parameters being estimated P : However, with the recent advance in computer technologies,
the computational complexity of BLS becomes less and less an issue.

To increase the computational efficiency, a recursive variant, known as RLS, was developed
in 1950. The computational complexity of RLS is only in the order of OðP 2Þ: Even though RLS
algorithms are well suited for on-line estimation and possess many similar statistical properties
as the block LS, they also suffer from the following drawbacks: (1) the gain of the algorithm
converges to zero, which leads to the loss of the tracking ability for time-varying parameters; (2)
there are also some numerical issues due to round-off errors as a result of finite-word length; and
(3) the estimation results are dependent on the choice of the initial conditions. Even though BLS
and RLS are equivalent analytically, it has been shown that for linear time-invariant systems,
the performance of BLS is almost always superior to that of RLS.

To overcome the above drawbacks, considerable efforts have been directed towards the
development of modified versions of RLS for on-line identification of time-varying systems, for
example, in References [5, 8, 10–13]. The key to track time-varying parameters is to use certain
type of forgetting techniques to discard ‘out-of-date’ data. Owing to its computational efficiency
and convenience to incorporate forgetting factors in RLS-type algorithms, almost all existing
techniques in dealing with parameter estimation of time-varying systems fall into the category of
recursive LS. These techniques can be classified into three main categories: (1) variable
forgetting factors [2, 5, 6, 10–17]; (2) covariance matrix modification [2, 18–20]; and (3) sliding
window [8, 21–23]. However, according to the best of our knowledge, there are few results in the
literature in dealing with estimation of abruptly and gradually changed parameters in the
framework of BLS.

In view of the inherent advantages of BLS, it is highly desirable to develop new techniques
that can improve the tracking ability of BLS for time-varying systems while retaining its other
salient features. Clearly, certain effective techniques to discard ‘out-of-date’ data need to be
developed. For this purpose, a new variable-length sliding window blockwise least squares
(VLSWBLS) scheme is developed in this paper to provide satisfactory parameter tracking in the
transient period and high level of estimation accuracy at the steady state for systems with both
abruptly and gradually changed parameters.

The proposed scheme consists of a change detection algorithm and a variable-length sliding
window. Once parameter changes are detected, the window length is shortened automatically.
The performance of the developed algorithms has been evaluated in comparison with that of
RLS-type algorithms with forgetting factors. The superior performance has been obtained in all
cases studied. The robustness of the algorithm to measurement noise has also been examined
through sensitivity analysis at various signal-to-noise ratio (SNR) levels.
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The paper is organized as follows: the problem of estimating parameters in systems with
abrupt and gradual parameter changes is formulated in Section 2, together with a brief review
on block and recursive least squares. A VLSWBLS algorithm is developed in Section 3 with the
help of a change detection scheme. The results of the illustrative example are presented in
Section 4 followed by the conclusions in Section 5.

2. PROBLEM FORMULATION AND BRIEF BACKGROUND REVIEW

2.1. Estimation of time-varying parameters

To formulate the parameter estimation problem, let us consider a discrete dynamic system
described by the following autoregressive moving average with auxiliary input (ARMAX)
model:

yðkÞ ¼ /Tðk � 1Þh

zðkÞ ¼ yðkÞ þ vðkÞ

/Tðk � 1Þ ¼ ½�zðk � 1Þ; . . . ;�zðk � nÞ; uðk � 1Þ; . . . ; uðk � mÞ�

hT ¼ ½a1; . . . ; an; b1; . . . ; bm�

ð1Þ

where uðkÞ and yðkÞ are the system input and output, respectively. zðkÞ is the measured output
and vðkÞ is a zero-mean white Gaussian sequence which counts for the measurement noise and
modelling errors. /Tðk � 1Þ and h are the information vector and the unknown parameter
vector, respectively. The number of parameters to be estimated is denoted as P ¼ nþ m: The
individual parameters in h can either be constant or subject to abrupt or gradual changes. For
clarity, let us represent the nominal parameter vector prior to any change by h0:

An abrupt change at an unknown time kA can be described as

hðkÞ ¼ h0; k5kA

hðkÞ ¼ h0 þ Dh; k5kA; jjDhjj=0

where Dh ¼ ½Da1; . . . ;Dan;Db1; . . . ;Dbm�T is assumed to be a constant vector, representing the
magnitude of the abrupt change.

Gradual change at an unknown time kGi can be represented by

hðkÞ ¼ h0; k5minðkGi ; i ¼ 1; . . . ; P Þ

hðkÞ ¼ h0 þ

r1 � 1ðk � kG1
Þ 0

. .
.

0 rP � 1ðk � kGP Þ

2
6664

3
7775hðk � 1Þ; k5minðkGi ; i ¼ 1; . . . ; P Þ

where ri; i ¼ 1; . . . ; P ; represents the rate of change in each individual parameter, and
1ðk � kGiÞ; i ¼ 1; . . . ; P ; is a switching function at KGi : Even though other forms of gradual
parameter changes are also possible, the paper mainly considers the above linear form of
change. However, the developed algorithm does not rely on any particular form of parameter
changes.
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2.2. Block and recursive least squares

Traditionally, to estimate the parameter vector, h; in a least square sense, using all available
measurements up to the current instant, j ¼ 1; 2; . . . ; k; one needs to minimize the following cost
function:

J ðh; kÞ ¼
Xk
j¼1

½zð jÞ � /Tð j� 1Þh�2 ð2Þ

The solution is given by

#hhðkÞ ¼
Xk
j¼1

/ð j� 1Þ/Tð j� 1Þ

" #�1 Xk
j¼1

/Tð j� 1Þzð jÞ

" #
ð3Þ

or in a compact form as

#hhðkÞ ¼ ½UT
kUk��1½UT

k zk� ð4Þ

where #hhðkÞ is known as least-squares estimate of h; and

zk ¼ ½zð1Þ zð2Þ � � � zðkÞ�Tk�1

Uk ¼

/Tð0Þ

/Tð1Þ

..

.

/Tðk � 1Þ

2
66666664

3
77777775
¼

�zð0Þ � � � �zð1� nÞ uð0Þ � � � uð1� mÞ

�zð1Þ � � � �zð2� nÞ uð1Þ � � � uð2� mÞ

..

. ..
. ..

. ..
. ..

. ..
.

�zðk � 1Þ � � � �zðk � nÞ uðk � 1Þ � � � uðk � mÞ

2
6666664

3
7777775
k�P

If this formulation were used in on-line applications, one would have to evaluate (4) every
time when a new measurement becomes available. To circumvent this problem, a recursive
version of the above scheme, known as RLS, has been developed.

The basic idea of an RLS algorithm is, rather than repeatedly solving (4), to compute the
parameter estimate #hhðkÞ by adding a correction term to the previous parameter estimate #hhðk � 1Þ
whenever new information becomes available.

Since RLS algorithm and its many variants can be found in textbooks and papers (see e.g.
References [2, 4, 6, 8]), further elaboration on RLS-type algorithms will be omitted herein in the
interest of space.

3. A VARIABLE-LENGTH SLIDING WINDOW BLOCKWISE LEAST SQUARES

3.1. Overview of the proposed algorithm

The objective of this study is to develop a parameter estimation algorithm suitable for time-
varying systems. The basic idea in achieving this objective is to use a sliding window blockwise
least squares with an automatically adjustable window length. The window length adjustment is
triggered by a parameter change detection algorithm. The key elements in this scheme include:
(1) an effective strategy to automatically adjust the length of the sliding window to achieve the
best performance in both transient and steady-state intervals; (2) a fast and reliable parameter
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change detection scheme; and (3) a sound mechanism to distinguish a gradual change from an
abrupt one.

3.2. Sliding window blockwise least squares

It is well known that one of the effective ways to deal with time-varying parameters is to use a
finite-length sliding window. However, if a fixed length window is used, it is generally difficult to
achieve both good parameter tracking during the transient and high degree of accuracy at the
steady-state conditions.

The unique idea proposed in this paper is to make the window length adjustable in response
to the potential change in the system parameters.

To further improve the tracking capability of the algorithm, an exponential weighting
technique (or other forgetting techniques) can still be used within the sliding window. Therefore,
a modified cost function can be written as follows:

JLðh; kÞ ¼
Xk

j¼k�Lþ1

lk�j½zð jÞ � /Tð j� 1Þh�2 ð5Þ

where L denotes the length of the sliding window. l ð05l51Þ is the forgetting factor within the
window.

The solution to this sliding window blockwise least squares (SWBLS) algorithm can be
obtained as follows:

#hhLðkÞ ¼
Xk

j¼k�Lþ1

lk�j/ð j� 1Þ/Tð j� 1Þ

" #�1 Xk
j¼k�Lþ1

lk�j/Tð j� 1Þzð jÞ

" #
ð6Þ

or, in a compact form as

#hhLðkÞ ¼ ½ðUk
k�Lþ1Þ

TLk
k�Lþ1U

k
k�Lþ1�

�1½ðUk
k�Lþ1Þ

TLk
k�Lþ1z

k
k�Lþ1� ð7Þ

where Uk
k�Lþ1 is similarly defined as in (4), and Lk

k�Lþ1 is an L� L diagonal matrix with the
diagonal elements being function of forgetting factors, i.e. lL�1; lL�2; . . . ; l0: For 05l51; the
corresponding SWBLS is referred to as sliding exponential window blockwise least squares
(SEWBLS). For l ¼ 1; the algorithm is known as sliding rectangular window blockwise least
squares (SRWBLS).

The performance of the above algorithm depends obviously on the window length. For time-
invariant systems, the longer the window length, the higher the estimation accuracy. However,
for systems with parameter changes, a longer window would lead to slower responses to these
changes. Therefore, in this case, the window length should be adjusted accordingly so that the
measurements prior to the change can be discarded effectively.

3.3. Strategies for window length adjustment

To improve the parameter tracking ability, a new strategy for window length adjustment has
been developed in this paper. The essence of the proposed approach lies in its ability to quickly
shrink the window length, should a change in system parameters be detected. Using a shorter
window length, it allows the algorithm to track the parameter changes more responsively. In the
case of an abrupt change, from the onset of the window shrinking, the window length will
expand progressively and return to its original length to maintain the steady-state performance.
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In case of a gradual parameter change, the window will be maintained at a desirable shortened
length depending on the rate of parameter changes until the end of the change is detected. Such
a fast shrinking and gradual expanding window makes the proposed approach suitable for
estimating both abruptly and gradually changing parameters.

To illustrate this concept clearly, let us consider the following snap-shots in Figures 1 and 2,
respectively, for a typical scenario in which an abrupt or a gradual parameter change has
occurred.

In Figure 1, if there is no detected parameter change, a sliding window of length LðkÞ ¼ LS is
used, where LS is a desirable window length at the steady state. This situation is shown in
Figures 1(a) and 1(b). Suppose that some parameters of the system have undergone changes,
and such a change is detected at kD to be an abrupt one. At this point, the window length is
reduced drastically and the new sliding window starts from kD � P þ 1: This case is illustrated in
Figure 1(c). From this point onwards, the window length expands step-by-step in the forward
direction until it reaches the full length LS ; as shown in Figure 1(d). Thereafter, the original
window size resumes as shown in Figure 1(e).

Figure 1. Window length adjustment in the presence of an abrupt change.
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For gradual parameter changes, the situation is slightly different: (1) Once a change is
detected and classified to be a gradual one, the window will stop expanding at a certain length,
denoted as LG; as shown in Figures 2(c)–2(e). The length of this shortened window will depend
on the estimated rate of the parameter change. The higher the change rate, the shorter the
window becomes; (2) once the gradual change ends, the window will return gradually to its
full length LS : This situation is shown in Figure 2(f), and the normal operation resumes in
Figure 2(g).

For LS parameter estimation, the minimum window size should not be less than P : At the
instant of window shrinking, Fk

k�LðkÞþ1 may still contain some data collected prior to the
parameter change. One way to further enhance the transient performance is to use an
exponential weighting within the shrunk window. It can also improve the performance of
parameter tracking in case of gradual changes.

Figure 2. Window length adjustment in the presence of a gradual change.
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3.4. Change detection mechanisms

To automatically initiate and complete the window length adjustment, a change detection
scheme must be used. The change detection scheme should also be able to distinguish an abrupt
change from a gradual one. Even though there are several different ways that one can detect
parameter changes in a system [24–32], for gradual changes, one not only has to detect the onset
of a change, but also to estimate the rate and the termination of such a change. In view of this,
two types of change detection have been used in this paper to signal the beginning and the end of
a change. Such a change detection scheme relies on a combined detection index using an output
prediction error and the parameter estimation error.

3.4.1. Change detection based on output prediction error. Consider the following output
prediction error within the sliding window of length LðkÞ:

eðkÞ ¼ zkk�LðkÞþ1 � #zzkk�LðkÞþ1 ¼ zkk�LðkÞþ1 � Fk
k�LðkÞþ1

#hhLðkÞ ð8Þ

where zkk�LðkÞþ1 ¼ ½zðk � LðkÞ þ 1Þ zðk � LðkÞÞ � � � zðkÞ�T and #zzkk�LðkÞþ1 is its estimated counter-
part. Note that the window length L is now a function of time.

Occurrence of a parameter change will be declared if the following accumulated detection
index:

deðkÞ ¼
1

Me

Xk
i¼k�Meþ1

eTðiÞeðiÞ ð9Þ

exceeds a pre-set threshold %rre

deðkÞ
> %rre change has started

4
%
re change has ended

8<
: ð10Þ

where %rre is the threshold for detecting the occurrence of a change and
%
re represents the

threshold for detecting the end of a change. Me is the number of data points used in calculating
the above detection index. The selection of Me and %rre represents certain degree of trade-off
between the probability of false alarm and the probability of missed detection. If the change is
detected at time kD; this time instant will be referred to as the detection time.

3.4.2. Change detection based on parameter estimation error. Similarly, one can also define the
following averaged parameter estimate in a sliding window of lengh My:

%hhMh ðkÞ ¼
1

Mh

Xk
j¼k�Myþ1

#hhLð jÞ ð11Þ

A decision for parameter change (or lack of it) can also be made if the detection index

dhðkÞ ¼ gjjj%hhMh ðkÞjj2 � jj%hhMh ðk � 1Þjj2j þ ð1� gÞ

�
Xk

i¼k�Mhþ1

jjj%hhMh ði� 1Þjj2 � jj%hhMh ði� 2Þjj2j ð12Þ
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exceeds the following pre-set threshold

dhðkÞ
> %rrh change has started

4
%
rh change has ended

8<
: ð13Þ

where 05g51 is the weighting factor. It determines the relative weights placed on the
instantaneous and the accumulative parameter estimation errors. Mh is the number of data
points used for calculating the above detection index.

Since a parameter change in a system usually manifests more pronounced at the output
prediction error than at the parameter estimation error, the detection index deðkÞ is more
suitable for detecting the onset of the parameter changes, and the detection index dhðkÞ is more
sensitive to the detection of change termination. The time at which a change terminates is
known as stopping time and denoted as kS :

Remark 1

The change detection algorithm in Equations (8)–(10) is belong to a class called cumulative sum
(CUSUM) algorithm, which is essentially a moving average scheme. Even though such an
algorithm is intuitive to understand and simple to implement, however, it has been shown [26]
that deðkÞ is not a sufficient statistics for parameter changes considered in Section 2.1.
Theoretically, one always runs the risk that some particular combination of parameter changes
may not manifest themselves to the changes in deðkÞ: To deal with such a drawback, more
sophisticated change detection schemes have been developed. The interested readers are
encouraged to consult [26] for a number of such algorithms. It would be out of the scope of this
paper to go into details. Instead, in the current work, we resort such a problem by incorporating
the other parameter estimation error-based change detection scheme as defined in Equation
(12). Between these two change detection schemes, our experience has indicated that almost all
types of parameter changes can be detected. In comparison with other change detection
schemes, the determination of changes in a particular set of parameters is done via the
subsequent parameter estimation scheme, rather than using multiple hypothesis tests on the
residuals.

3.5. Distinguish an abrupt from a gradual change

In the change detection scheme, it is important to differentiate abrupt change from gradual one
so that the most appropriate window adjustment strategies can be employed. The basic
approach is to calculate the rate of change of the detection variable dhðkÞ using linear
regressions. If the rate of change is slower than a certain level, the change is classified as gradual,
otherwise, abrupt. Such a concept is demonstrated graphically in Figure 3.

Suppose at kD; dhðkÞ exceeds a detection threshold %rry; a linear regression can be applied to the
detection variable collected from kD �Mh þ 1 up to k; to determine a and b in the following
expression:

dhðkÞ ¼ aþ bk ð14Þ
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where the parameter b is known as the slope, it indicates the rate of change in the detection
variable dhðkÞ: A hypothesis test on b against a threshold t is given as follows:

b ¼
> t Abrupt change

4t Gradual change

(
ð15Þ

The slope b can be estimated as

bðkÞ ¼

Pk
j¼kD�Mhþ1 ½j� %mmðkÞ�½dhð jÞ � %mmdh ðkÞ�Pk

j¼kD�Mhþ1 ½j� %mmðkÞ�2

¼

Pk
j¼kD�Mhþ1 ½j� %mmðkÞ�dhð jÞPk

j¼kD�Mhþ1 ½j� %mmðkÞ�2
ð16Þ

where

%mmðkÞ ¼
1

k � kD þMh

Xk
j¼kD�Mhþ1

j ð17Þ

3.6. Algorithmic summary of the proposed scheme

To summarize the proposed scheme, a flowchart is shown in Figure 4.
The window lengths at different stages of the algorithm are summarized as follows:

LðkÞ ¼ LS before a change is detected;
LðkÞ ¼ P once a change is detected at k ¼ kD;
LðkÞ ¼ Lðk � 1Þ þ 1 window expending after the change is detected;

until LðkÞ ¼ LG for a gradual parameter change;
or LðkÞ ¼ LS for an abrupt parameter change and at the steady-state.

Figure 3. Determination of gradual and abrupt changes.
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4. NUMERICAL ILLUSTRATIONS

To evaluate the performance of the proposed algorithm, a system with different parameter
change patterns has been used for simulation studies. A complete test scenario consists of a
gradual parameter change followed by an abrupt one.

4.1. System used in the study

The second-order system used in the simulation is adopted from Reference [6]. Necessary
modifications have been made to simulate the parameter changes. The system is described by the
following difference equation:

yðkÞ ¼ �a1yðk � 1Þ � a2yðk � 2Þ þ b1uðk � 1Þ þ b2uðk � 2Þ

zðkÞ ¼ yðkÞ þ vðkÞ
ð18Þ

where yðkÞ is the output of the system, and uðkÞ the input. vðkÞ is a zero-mean white Gaussian
noise sequence. The input uðkÞ is also a zero-mean white Gaussian sequence with unit variance
s2u ¼ 1:0; assumed to be independent of vðkÞ: The simulated parameter changes are summarized
in Table I with graphical illustrations in Figure 6.

Figure 4. Algorithmic flowchart of the proposed scheme.
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4.2. Indices for performance evaluation

In order to evaluate the performance of different schemes, the following averaged performance
measure is used for each individual run:

ehðkÞ ¼
1

Nrun

XNrun

j¼1

jjhðkÞ � #hhjLðkÞjj2 ð19Þ

where Nrun ¼ 100 stands for the total number of independent runs in the Monte Carlo
simulation.

In addition, the average error (AE) and the standard deviation (STD) of the ehðkÞ; 8k 2 f1;Ng
are defined as follows to be overall performance indicators, i.e.

AE : %eeh ¼
1

N

PN
k¼1 ehðkÞ

STD : sh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

PN
k¼1 ½ehðkÞ � %eeh�2

r ð20Þ

where N ¼ 1500 is the total number of sample points chosen for the study.

4.3. Simulation results and analysis

4.3.1. Comparison between the proposed and the RLS-type algorithms. To compare the
estimation accuracy and the parameter tracking capability, the performance measure, ehðkÞ; is
shown in Figure 5 for the proposed variable-length sliding rectangular window blockwise least
squares (VLSRWBLS) and the exponentially-weighted recursive least squares (EWRLS). In the
EWRLS, a constant forgetting factor of l ¼ 0:95 is used. It can be seen that superior tracking
performance has been achieved by the VLSRWBLS algorithm. The estimate converges quickly
to the new parameter values with a much smaller steady-state estimation error. Compared with
the estimation error prior to the change, almost the same level of the estimation accuracy has
been obtained in the post-changed interval. Even though the EWRLS can still track the changed
parameters, the rate of convergence is significantly lower and the steady-state estimation error is
also relatively higher.

To demonstrate the time history of the parameter estimate, Figure 6 shows the trajectories of
the estimated parameters using these algorithms. It can be seen clearly that the proposed
approach yields excellent results in both pre- and post-change intervals. Excellent tracking
performance for both gradual and abrupt changes has also been achieved for all four
parameters. The proposed approach outperforms the EWRLS for abrupt parameter changes.

Table I. The simulated parameter changes.

k 05k5200 2004k5500 5004k5650 6504k51000 10004k41500

a1 �1.5 10�3 � ðk � 200Þ �1:2� 10�3 � ðk � 500Þ �1.5 �1.2
a2 0.7 �6:7� 10�4 � ðk � 200Þ 8:0� 10�4 � ðk � 500Þ 0.7 0.5
b1 1.0 �10�3 � ðk � 200Þ 1:2� 10�3 � ðk � 500Þ 1.0 0.7
b2 0.5 �6:7� 10�4 � ðk � 200Þ 8:0� 10�4 � ðk � 500Þ 0.5 0.3
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To demonstrate the window length adjustment strategies, the time history of the
corresponding window length in one entire simulation run is shown in Figure 7. For easy
reference, the pattern of parameter change in a1 is also present. The automatic window

Figure 5. Comparison between the proposed and the EWRLS algorithms.

Figure 6. Parameter estimates via proposed and EWRLS algorithms.
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shrinking, expanding and holding processes in response to abrupt and gradual changes and at
the steady state are all illustrated. In the case of the gradual parameter change during the period
2004k5650; once the change is detected and determined to be a gradual one at kD ¼ 204; the
full window of length LS ¼ 200 is shrunk rapidly to L ¼ P ¼ 4; and then expanded gradually up
to a length of LG ¼ 20 and maintained at the value. Once the change stops at k ¼ 650 which is
detected at kS ¼ 696; this window starts to expand again stepwise to the full length of LS : When
an abrupt change at k ¼ 1000 is detected at kD ¼ 1003; the window is shrunk again to the
minimal length of L ¼ 4 and progressively expanded back to the full length L ¼ 200:

Figure 7. History of window length adjustment in response to different parameter changes: (a) history of a
parameter change; and (b) history of corresponding window length adjustment.
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Remark 2

Even though this example only illustrates a case of linearly changed parameter values, the
proposed scheme can be adopted to more complex parameter change patterns by making the
window length as a function of the estimated rate of parameter change. However, caution needs
to be taken to avoid too frequent window adjustments to ensure a smooth parameter estimate at
the duration of such gradual changes. Furthermore, in addition to the step-by-step expanding,
other more sophisticated window expanding strategies may also worth exploring.

4.3.2. Performance for fixed- and variable-length windows. To evaluate the effect of different
window lengths on the performance of the estimation schemes, fixed window lengths at L ¼
50; 100; 200 and the one based on the proposed variable-length sliding window algorithm have
been experimented. Results are shown in Figures 8(a) and 8(b), with the rectangular- and
exponential-weighted windows, respectively.

For a sliding window with a fixed-length, it can be seen that the longer the window, the higher
the estimation accuracy at the steady state. However, a longer window can lead to larger delay
in obtaining satisfactory post-change parameter estimation. It is clearly observable that, by
using a fixed window length, one could not achieve satisfactory performance in both the steady
state and the transient periods. Using the proposed variable-length sliding window strategy,
significantly improved performance in both the transient and the steady-state periods has been
obtained.

4.3.3. Robustness to measurement noise. To evaluate the robustness of the proposed approach
at different noise levels, the system in (18) has been simulated at different SNR levels. The results
are summarized in Table II. The input to the system is a zero-mean white Ganssian sequence
with a fixed unit variance s2u ¼ 1:0: while the variance of the noise term vðkÞ is adjusted to
different levels. It can be observed from this table that for different level of noise intensities, the
proposed approach is robust for a set of pre-set detection thresholds
( %rr0e ¼ 10�2;

%
r0e ¼ 10�5;

%
r0h ¼ 10�5 : t ¼ 18%; with the choice of window length Me ¼ Mh ¼ P ).

A change in SNR by a factor of 500 results in changes in AE and STD by a factor of less
than 50.

Figure 8. Comparison among different window lengths and shapes: (a) rectangular window; and
(b) exponential window.

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:505–521

LEAST-SQUARES ALGORITHM 519



5. CONCLUSIONS

With ever advancement in computer technology and inexpensive computing power at our
disposal, we could not help but to re-think the necessity of some of the existing computationally
more efficient but numerically less perfect algorithms. In this paper, the standard least squares
(LS) parameter estimation approach has been revisited in view of its better accuracy and simpler
implementation in comparison with recursive least squares (RLS) type of algorithms. To
address the weak parameter tracking ability of blockwise least squares (BLS), an effective sliding
window blockwise least squares approach with an automatically adjustable window length has
been proposed to extend the LS parameter estimation to systems with abrupt and gradual
parameter changes. A general scheme for the parameter estimation in the presence of both
abrupt and gradual changes has been developed in the framework of BLS in this paper. The key
to the proposed scheme is the introduction of window length adjustment strategies which make
effective use of the measurements during the transient and the steady-state intervals. Simulation
results have shown that the proposed scheme outperforms the RLS-type algorithms and
possesses both excellent parameter tracking and steady-state performance.

The results presented in this paper is significant in the sense that they really make us to re-
think about the following issue: should we use blockwise or recursive least squares? In view of its
excellent performance and the rapid advance in computer technology, it is our view that the
blockwise LS approaches will play even bigger role in signal processing, communications,
control and other engineering applications in a very near future in the situations where RLS
algorithms have been predominant up till now.
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